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Abstract 

In this paper, we present the development of a 
sensory data glove using infrared receivers/transmitters 
as finger-bend measurement sensors. This data glove 
produces nonlinear outputs that must be calibrated 
before it is employed in a virtual environment. To make 
the glove easy for use, a four-stage calibration procedure 
together with the construction of the calibration device is 
realized.  

In the software calibration process, we devise a 
neural-network-based function approximator trained with 
a modified robust backpropagation (BP) algorithm that 
has the ability of eliminating the effect of noises in the 
training data. In order to speed up the training process, 
we propose a “tentative-and-refined” training method 
that is combined with a robust BP algorithm to constitute 
the modified one. Many successful experiments are made 
on a concrete data glove to verify the effectiveness of 
the proposed algorithms. So far, the experimental results 
of the calibration process with our method are very 
satisfactory. 

Key words : data glove, calibration device, neural-
network-based function approximator, 
robust BP algorithm, tentative-and-refined 
training. 

1. Introduction 

In recent years, a new type of input devices, a 
sensory data glove, has been extensively applied along 
with the popularization of virtual reality (VR). The data 
glove is a multi-sensory device that generates a large 
amount of data and is more complex than other input 
devices. Nevertheless, most researchers still adopt this 
device because the natural interfacing characteristic of 
the data glove with the human being is the way to 
improve system manipulations that are applicable in 
many specific fields, particularly in immersive VR 
systems. At present, the data glove has been 
increasingly employed in the areas of teleoperations and 
robotic control [1]-[3], surgery training of medical 
applications [4],[5], entertainment sports of VR systems 

[6],[7], industrial manufacturing of CAD/CAM 
applications [8],[9], and so on. 

Among the available input devices for VR, hand-
tracking technology is the most popular one. Such glove-
based input devices let VR users apply their manual 
dexterity to the VR activities. Hand-tracking gloves 
currently marketed include: Sayre Glove, MIT LED Glove, 
Digital Data-Entry Glove, DataGlove, Dexterous 
HandMaster, Power Glove, CyberGlove, VPL Glove, and 
Space Glove [10]. 

According to the outputs of sensors, the data 
gloves can be grouped into two classes: one produces 
linear output, and another produces nonlinear output. 
Either linear or nonlinear data gloves should be calibrated 
before they can be used in the applications. The 
calibration process of linear data gloves is directly 
executed by a linear mapping, but that of nonlinear data 
gloves is not so easy owing to lack of outputs’ 
references of nonlinear sensors. In this paper, we present 
the development of a sensory data glove using infrared 
receivers/transmitters as the finger-bend measurement 
sensors. This data glove produces nonlinear outputs that 
must be calibrated before operation. To make the glove 
easy for use, the construction of a calibration device 
together with a four-stage calibration procedure is 
developed. The former creates a calibration device for a 
nonlinear data glove, and the latter performs an 
associated nonlinear mapping via a neural-network-based 
function approximator [11]-[13] that is trained by a 
modified robust backpropagation (BP) algorithm of 
noises elimination capabilities. 

The rest of the paper is organized as follows. In 
Section 2 we describe the hardware construction of the 
data glove as well as the calibration device. In Section 3 
we introduce the software calibration process. In Section 
4 we present experimental results. Finally, we summarize 
our findings and conclude our paper in Section 5. 

2. Hardware Construction 

2.1 Finger-bend sensors 

The finger-bend sensor is made of infrared 
transmitter and receiver components that are plugged 

 



   

into a small flexible pipe as shown in Fig.1. The flexible 
pipe functions as the infrared signal transmission space. 
When an operator’s finger is bent, the finger-bend 
sensor located on the relative joint is also bent in the 
same shape that causes the decreasing of the radiation 
signal reaching the infrared receiver. This signal decrease 
will affect the output impedance of the receiver. 
Unfortunately, our experimental results of the 
relationship between the bend angle and the output 
impedance are nonlinear. Such nonlinear characteristic is 
affected by the bend position of the sensor. To overcome 
this problem, we implement a calibration device 
associated with a four-stage calibration procedure. 

 

 

Fig. 1  The finger-bend sensors with two flexible pipes of 
different materials. 

 

2.2 Fitting up the data glove  

The data glove we create consists of twelve bend 
sensors, ten of which are located in the finger joint 
positions of the glove, one of the remainder is in the 
thumb -index abduction angle position, and the last one is 
in the carpal position for measuring the wrist pitch 
rotation angle. Figure 2 illustrates the position of each 
sensor equipped on the data glove. 

 

Fig. 2  Positions of the sensors on the data glove. 
 

As shown in Fig.2, the sensor located in the carpal 

position is a linear one that produces linear outputs. In 
this case, the calibration is simply a linear mapping 
process. The name of each sensor related to its position 
in the glove is depicted in Table 1. 

Table 1  The Names of the Sensors Related to Fig.2 

Position no. Sensor name 
1 Thumb IJ 
2 Thumb MPJ 
3 Index PIJ 
4 Index MPJ 
5 Middle PIJ 
6 Middle MPJ 
7 Ring PIJ 
8 Ring MPJ 
9 Pinkie PIJ 
10 Pinkie MPJ 
11 Thumb -index abduction 
12 Wrist pitch 

 

2.3 The calibration device 

The calibration device of the data glove is 
composed of three linear sensors. The first linear sensor 
is fitted on the positions of proximal interphalangeal 
joints (PIJ), which provides the referenced values for the 
four PIJ sensors of the data glove. The second sensor is 
fitted on the positions of metacarpo-phalangeal joints 
(MPJ) to provide the referenced values for the four MPJ 
sensors of the data glove. The last sensor is attached to 
a moveable stick inside a pen-shaped tube to convert the 
bend angles of thumb IJ and MPJ joints into a linear 
motion. Figure 3 shows the positions of the linear 
sensors used for data calibration. 
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Fig. 3  Linear sensors of the calibration device positioned 
in: (a) four-finger PIJ and MPJ joints; (b) thumb IJ 
and MPJ joints. 

 

The calibration process is executed before the data 
glove is employed in the virtual environment. To make it 
easy for use, we develop the calibration technique of four 
stages as follows: 
1) Use the first linear sensor to calibrate the four-finger 

PIJ joints. This stage begins with placing the hand on 
the calibration device whose first sensor attaches to 
the middle phalange position of the index as shown in 
Fig.4(a). As the calibration process is started, users 
bend the four-finger PIJ joints to the maximum angle 
and then stretch the PIJ joints back to their original 
positions at a constant velocity. 

2) Use the second linear sensor to calibrate the four-
finger MPJ joints. At the beginning of this stage, the 
hand wearing the data glove is placed on the 
calibration device with the second sensor attaching 
to the proximal phalange position of the index as 
shown in Fig.4(b). When the calibration process is 
started, users flex the four-finger MPJ joints to the 
maximum angle and restore the MPJ joints to the 
original positions at a constant velocity. 

 
 
 

 
(a) 

 
 

 
(b) 

Fig. 4  Illustration of the data glove calibration process: 
(a) four-finger PIJ joints calibration; (b) four finger 
MPJ joints calibration. 

 
3) Use the third linear sensor to calibrate the thumb IJ 

and MPJ joints. At this stage, users wearing the data 
glove grasp the pen-shaped tube and push the 
movable stick downwards as shown in Fig.5(a). The 
motion of the stick is connected with the linear 
sensor to produce the referenced outputs for the 
thumb IJ and MPJ sensors.  

4) Use the second linear sensor to calibrate the thumb -
index abduction angle. At this stage, the hand is 
placed on the calibration device with the palm facing 
to the left as shown in Fig.5(b). The second linear 
sensor is attached to the thumb distal phalange 
position for measuring the movement of the thumb -
index abduction angle. 

 
(a) 

 
 

 
(b) 

Fig. 5  Illustration of the data glove calibration process:  
(a) thumb IJ and MPJ joints calibration; (b) the 
thumb -index abduction angle calibration. 

 
3. Software Calibration Process 

After the four-stage calibration procedure is 
finished, a function approximator implemented by a 
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feedforward neural network is developed to each sensor 
of the data glove. The structure of the neural network is 
designed in the following way to provide the function 
approximating capability. The hidden layers of the 
network contain up to twenty-five nodes. It was 
determined experimentally for obtaining the best 
approximation result. In our experiments, each network 
consists of five layers.  

The neural-network-based function approximator in 
the calibration process is normally trained by the BP 
algorithm, which acts as a nonlinear converter to map 
data glove sensors’ outputs into calibration sensors’ 
values. The outputs of these nonlinear converters are 
then transformed into the finger-bend angles by a linear 
mapping function. 

Some factors that slow down the execution time of 
the BP algorithm, especially when using a large amount 
of training pairs, are summarized as follows: 
1) The correlation between training pairs. It means that 

on an average, the sampling signals do not change 
rapidly so that the difference between adjacent 
samples should have a lower variance than the 
variance of the whole signals. When applying the BP 
algorithm to train the network, we treat each training 
pair as an independent one that will generate conflict 
in the weight adjustment of the training process. 

2) The number of floating-point multiplications. 
Assume that the number of floating-point 
multiplications needed to train one training pair is n, 
the total number of floating-point multiplications 
required for one iteration in the training process yields 
nm or more when the conflict is occurred for m 
training pairs in the training set. 

3) Small learning rates. When a large amount of training 
pairs is adopted in the training process, a small 
learning rate is usually selected to prevent the conflict 
in the weight adjustment among training pairs. 

4) Undesired initial weights of the network . The initial 
weights selected at random normally generate the 
outputs that are deviated from the approximated 
function. 

To speed up the BP algorithm, we propose a 
“tentative-and-refined” training method. This method 
includes a tentative training procedure, followed by a 
refined training one. In the tentative training procedure, 
part of the original training set is chosen to train the 
network. After this tentative training, the entire original 
training set is employed to refinedly train the network. 
The motivation is based on the fact that the training 
speed will perform rapidly when the training set is not too 
large. Additionally, it can provide good initial weights for 
the subsequent process. 

When noises exist, the approximated function 
behaves like a highly nonlinear one. Consequently, the 
number of neurons in the network should be large 
enough to approximate the nonlinear function. 
Furthermore, as the nonlinearity increases, more number 

of iterations is needed for the network to reach the 
desired error that causes the performance of the BP 
algorithm becoming too slow for practical uses. In mo st 
applications, it is difficult to guarantee that noises do not 
present in the training set. In order to eliminate the effect 
of noises in the training data, we devise a neural-
network-based function approximator trained by a 
modified robust BP algorithm. This training approach 
combines the “tentative-and-refined” training method 
and a robust BP algorithm [14]. The following describes 
this combination that results in a modified robust BP 
algorithm [15]: 

Step 1:  Use the first procedure of the tentative-and-
refined training method to train the network 
until the value of its energy function 

?
?

?
K

k
ktR rE

1
)(?  reaches ? , where ? ?kt r?  is 

the integration of the Hampel’s tanh estimator, 

kr  is the error residual, K  is the number of 

training sets, and ?  is the threshold employed 
to detect the time when the energy function 
has a sharp drop during the initial estimation. 

Step 2:  Reset a counter k  that is used for updating 
? ?kt r? . 

Step 3:  Compute the robust energy function: if 
??RE  or the energy difference between the 

current and the previous iterations is less than 

d? , then terminate the learning process. 

Step 4:  If the counter k  is a multiple of the time 
duration t?  between successive updates, 

then alter ? ?ta  and ? ?tb which are the time-

various cut off points used for obtaining the 
derivative of the optimal ? ?kt r? . 

Step 5:  Compute the error signals for the output layer 
and hidden layers by using the robust BP 
algorithm, and update the weights of the 
network. 

Step 6:  Increase the counter k  by one and go to Step 3. 

4. Experimental Results 

To demonstrate the performance of our training 
method, we construct a feedforward neural network 
consisting of 4 layers with 2 input neurons, 1 output 
neuron, and 8 neurons in the first and the second hidden 
layers. The learning rate is 0.002 , the parameter ?  of the 
activation function is 15, and the expected error is 
0.000005. Firstly, the network is trained with a traditional 
BP algorithm. The number of iterations and the execution 
time required in each training process are recorded, and 
then compared to the tentative-and-refined training 
method with the learning rate of 0.005 and the expected 
error of 0.0005 in the tentative training procedure. In this 
initialization process, the training pairs are selected from 
the original ones with the interval of 20 samples, 
including stationary points. The number of iterations and 



   

the execution time required for the above two techniques 
are listed in Table 2 and Table 3 with respect to 14 
different experiments. 

Table 3 shows the total execution time of the 
tentative-and-refined training method is less than that of 
a traditional BP algorithm, even though the number of 
iterations of the weight initialization procedure is larger 
than that of the traditional one, because of fewer training 
pairs participating in the tentative training stage. Figure 6 
shows the output of the ring MPJ sensor of the data 
glove, and the output of the network trained by the 
modified robust BP algorithm is shown in Fig.7. 

Table 2  The Number of Iterations and the Execution Time 
of the Traditional BP Algorithm 

The traditional BP algorithm Exp. no. 
Iterations Time in sec. 

1 1,347 146 
2 573 63 
3 1,316 144 
4 1,772 194 
5 751 83 
6 3,472 376 
7 1,654 181 
8 1,771 193 
9 4,500 491 
10 600 67 
11 512 56 
12 2,036 221 
13 4,500 489 
14 400 45 

Total execution time in sec. 2,798 
 

Table 3  The Number of Iterations and the Execution Time 
of the Tentative-and-Refined Training Method 

The tentative-and-refined training method 
Procedure 1 Procedure 2 

Exp. 
No. 

Iterations Time Iterations Time 
Total time 

in sec. 

1 116 0.7 73 8 8.7 
2 3,784 24 5 0.5 24.5 
3 23,789 144 6 0.7 144.7 
4 1,480 9 391 42 51 
5 4,806 30 1 0.1 30.1 
6 1,881 12 822 90 102 
7 5,397 33 1 0.1 33.1 
8 7,202 44 6 0.7 44.7 
9 3,092 19 7 0.8 19.8 
10 418 3 1 0.1 3.1 
11 6,908 43 7 0.8 43.8 
12 9,010 55 1 0.1 55.1 
13 6,446 39 885 95 134 
14 578 3 273 30 33 

Total execution time in sec. 822.6 
 

Ring MPJ sensor’s output  
Fig. 6  The output of the ring MPJ sensor on the data 

glove. 

C
al

ib
ra

tio
n 

va
lu

e

R i n g  M P J  s e n s o r ’ s  o u t p u t

 
Fig. 7  The output of the network trained by the modified  

robust BP algorithm. 

 
The performance of the data glove after completing 

the calibration is illustrated in Fig. 8. 

 
 (a) 

 



   

 
(b) 

Fig. 8  A hand gesture and the corresponding virtual 
hand: (a) a user’s hand wearing the data glove; 
(b) the virtual hand in a virtual environment. 

5. Conclusions  

In this paper, we have presented the construction of 
a nonlinear data glove associated with a four-stage 
calibration procedure. In the software calibration process, 
we propose a new method of accelerating the BP 
algorithm by repeatedly training the network with 
different sizes of training sets that are produced by 
resampling the ones. We call it the tentative-and-refined 
training method. It can work well in the application of 
function approximation because the training pair 
generated by the sampling mechanism is usually 
correlated to the adjacent one. To increase the 
robustness of the algorithm, we devise a modified robust 
BP algorithm that combines the “tentative-and-refined” 
training method and the robust BP algorithm. 

Although the data glove provides a natural way of 
performing a human-machine interface, it is not so 
convenient for the operator to use in the virtual 
environment owing to the presence of electric wires 
connecting the glove with the control device. More 
researches that should be accomplished in future 
involve: 
1) The development of a force-feedback device. This 

device is attached to the data glove to feed the force 
back to the operator from a virtual environment. When 
a virtual hand touches a virtual object in the virtual 
environment, the force generated from the object is 
calculated according to the physical modeling used, 
and then sent out to the force-feedback device. 

2) The natural way of object grasping in a virtual 
environment. In the real-time virtual reality 
application, the user wearing a data glove manipulates 
virtual objects via the virtual hand. To provide more 
realistic object grasping, the force generated from the 
hand making contact with the object should be 
modeled in the virtual environment. 

3) The development of a motion constraint device. This 
device is employed to restrict the fingers’ movements 
of an operator’s hand when he grasps an object in the 
virtual environment.  

4) The development of a portable data glove. In this 
research, we attempt to increase the efficiency of the 
data glove acting as a human-machine interface, and 
to enhance its performance. 
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